Energy use in U.S. manufacturing and increasing imports from China

- 미국내 중국 수입침투율 증가에 따른 미국 제조업의 에너지 수요영향 분석 -

Applied Economics, 55(58) pp.6823-6831

오경수 계명대학교 경제통상학부

Introduction

- Research question
 - Estimate the effect of increased Chinese import penetration on energy use as a factor of production in U.S. manufacturing
 - Decompose the effect into factor substitution effects and output scale effects
- Background
 - Since 1990s, the emergence of China, a huge trading partner
 - Change the industrial structure of its other trading partners
 - Energy use is also related to environmental issues
 - Traditional trade theory(factor abundant) vs. New trade theory(economies of scale)

Introduction

- Previous studies
 - Antweiler, Copeland and Taylor (2001), Cole (2006)
 - Feng et al. (2012), Omri and Nguyen (2014)
 - Bernard, Jensen and Schott (2006)
- Contribution
 - the impact of increase imports from China on the U.S. manufacturing sector, rather than the impact of trade liberalization in general on national energy use

Methodology: Data

A balanced panel data

- 1997~2005 U.S. manufacturing industries (obs:3,438)
 - The annual survey of manufacturers(ASM) : 473 industries
 - Trade data for U.S. manufacturing: 385 industries

	Mean	Std. Dev.	Min.	Max
Energy Use (in trillion Btu.)				
Total (ene())	32 3171	118 6422	0.0708	1760 7000
Fuels $(fuel())$	25 6514	104 6330	0.0/18	1607 3550
Fuels (<i>JuelQ</i>)	25.0514	104.0339	0.0418	1007.3330
Electricity (ectQ)	6.6657	17.1415	0.0000	206.6052
Import penetration from China (<i>IP_c</i>)	0.0499	0.1154	0.0000	0.9126
Ratio of labour to capital (LK)	0.4593	0.3010	0.0128	2.1171
Value of shipment (in billion of real USD) (vship)	9.4725	23.2710	0.1012	877.9968

Methodology: Conceptual framework

- Trade based on comparative advantage
 - It is expected that products in U.S. manufacturing move towards energyintensive industries and result in using more energy in U.S. manufacturing.
- New trade theory
 - Trade leads to increased competition, that encourages firms to innovate and adopt new technologies, and the results are increased energy efficiency and less energy use.
- Different types of energy inputs
- \rightarrow Decomposition of trade effect: scale of production and factor substitution

Methodology: Empirical strategy

Empirical equation

 $E_{i,t} = \alpha_0 + \alpha_1 * IP_{i,t}^c + \alpha_2 LK_{i,t} + \alpha_3 Vship_{i,t} + \alpha_4 (Vship_{i,t})^2 + \alpha_5 LK_{i,t} Vship_{i,t} + \alpha_6 IP_{i,t}^c LK_{i,t} + \alpha_7 IP_{i,t}^c Vship_{i,t} + \alpha_8 IP_{i,t}^c (LK_{i,t})^2 + \alpha_9 IP_{i,t}^c (Vship_{i,t})^2 + \varepsilon_{it}$

Endogeneity problem

- unobserved shocks that simultaneously related to energy use among domestic firms in an industry and imports from China
- Instrumental Variable: the Chinese trade share of world trade
- Others
 - cross-sectional dependence test, panel unit root test, cointegration test

Results: Marginal effects

Estimation results by OLS and IV with fixed effects

Marginal effects

		Fixed Effects			IV Fixed Effects			
		А	В	С	А	В	С	
	IP_c	0.010	0.008	0.005	0.095***	0.088***	0.085***	
eneQ	IP_c*LK	0.012	0.003	0.001	0.012	0.008	0.007	
	IP_c*vship		0.024***	0.098***		0.011	0.027	
	IP_c	0.008	0.006	0.001	0.080***	0.068***	0.060***	
fuelQ	IP_c*LK	-0.002	-0.013	-0.016*	-0.012	-0.019*	-0.020**	
	IP_c*vship		0.027***	0.128***		0.018**	0.075***	
	IP_c	0.010	0.009	0.008	0.075***	0.076***	0.082***	
ectQ	IP_c*LK	0.026***	0.021**	0.012**	0.033***	0.034***	0.035***	
	IP_c*vship		0.014**	0.039		-0.001	-0.045	

Conclusion

- The opposite of the factor substitution effect for fuels and electricity
 - Labor intensive industries with high Chinese import penetration use less fuels and more electricity.
 - Electricity could have the potential to easily replace labor.
- Implications
 - Depending on the characteristics of major trading partners and factors of production, the policy responses will need to be different.
 - As the underlying cause of the most-profile environmental problems, proper understandings of fuels and electricity as a factor of production in manufacturing is required.

Tests

■ Cross-sectional dependence test: Pesaran (2015)

	eneQ	fuelQ	ectQ	IP_c	LK	vship
Statistics	56.018	101.881	94965	488.177	207.866	118.508
P-value	0.000	0.000	0.000	0.000	0.000	0.000

Panel unit root test		Lev	vel	1 st difference	
		ADF-F	PP-F	ADF-F	PP-F
: ADF-F and PP-F			600 0 400		
	eneQ	1092.9464***	682.2482	1803.0962***	27/3.7727***
	fuelQ	918.8958***	705.0313	2313.2275***	3102.1555***
	ectQ	1104.1974***	676.7761	2005.4868***	2619.4791***
	IP_c	544.3059	346.7891	1204.5107***	2187.4352***
	LK	1396.6928***	1186.0991***	1616.7172***	2509.5905***
	vship	726.8733	529.2215	1331.6991***	2503.7818***

Tests

■ Cointegration test: Kao (1999)

	MDF		DF		ADF	
Dep. Var.	Statistics	p-value	Statistics	p-value	Statistics	p-value
eneQ	9.813	0.000	6.848	0.000	3.337	0.000
fuelQ	9.226	0.000	7.021	0.000	3.503	0.000
ectQ	11.181	0.000	8.837	0.000	7.808	0.000

Results

Dependent variable: eneQ

	Fixed Effects			IV Fixed Effects		
VARIABLES	А	В	С	А	В	С
IP_c	0.022	-0.186***	-0.807***	0.107***	0.002	-0.130
_	(0.016)	(0.051)	(0.210)	(0.021)	(0.074)	(0.234)
LK	-0.099	-0.301	-0.399	-0.194	-0.286*	-0.307*
	(0.252)	(0.258)	(0.243)	(0.161)	(0.168)	(0.168)
vship	1.447***	1.484***	2.256***	1.462***	1.477***	1.627***
	(0.285)	(0.276)	(0.313)	(0.158)	(0.158)	(0.256)
sqvship	-0.055 ***	-0.050***	-0.097***	-0.054***	-0.051***	-0.060***
	(0.016)	(0.015)	(0.018)	(0.009)	(0.009)	(0.015)
LK*vship	0.031	0.051	0.062**	0.042**	0.051***	0.054***
	(0.030)	(0.031)	(0.029)	(0.018)	(0.019)	(0.019)
IP_c*LK	0.012	0.003	0.001	0.012	0.008	0.007
	(0.008)	(0.008)	(0.008)	(0.009)	(0.009)	(0.008)
IP_c*vship		0.024***	0.173***		0.011	0.042
		(0.006)	(0.048)		(0.007)	(0.050)
IP_c*sqvship			-0.009***			-0.002
			(0.003)			(0.003)
Year Dummy	Y	Y	Y	Y	Y	Y
Observations	3,303	3,303	3,303	3,194	3,194	3,194
R-squared	0.402	0.413	0.422	0.349	0.367	0.372